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In 1948, Claude Shannon published a paper called A Mathematical Theory of

Communication[1]. This paper heralded a transformation in our understanding of information.

Before Shannon’s paper, information had been viewed as a kind of poorly defined miasmic

fluid. But after Shannon’s paper, it became apparent that information is a well-defined and,

above all, measurable quantity. Indeed, as noted by Shannon,

A basic idea in information theory is that information can be treated very much like a physical

quantity, such as mass or energy. Caude Shannon, 1985.

Figure 1: The communication channel. A message (data) is encoded before being used as input to a

communication channel, which adds noise. The channel output is decoded by a receiver to recover the message.

Shannon’s Information Theory



Information theory defines definite, unbreachable limits on precisely how much

information can be communicated between any two components of any system,

whether this system is man-made or natural. The theorems of information theory are so

important that they deserve to be regarded as the laws of information[2, 3, 4]. The basic

laws of information can be summarised as follows. For any communication channel

(Figure 1): 1) there is a definite upper limit, the channel capacity, to the amount of

information that can be communicated through that channel, 2) this limit shrinks as the

amount of noise in the channel increases, 3) this limit can very nearly be reached by

judicious packaging, or encoding, of data.



Information is usually measured in bits, and one bit of information allows

you to choose between two equally probable, or equiprobable,

alternatives. In order to understand why this is so, imagine you are

standing at the fork in the road at point A in Figure 2, and that you want

to get to the point marked D. The fork at A represents two equiprobable

alternatives, so if I tell you to go left then you have received one bit of

information. If we represent my instruction with a binary digit (0=left and

1=right) then this binary digit provides you with one bit of information,

which tells you which road to choose.

Now imagine that you come to another fork, at point B in Figure 2.

Again, a binary digit (1=right) provides one bit of information, allowing

you to choose the correct road, which leads to C. Note that C is one of

four possible interim destinations that you could

Finding a Route, Bit by Bit



Figure 2: For a traveller who does not know the way, each fork in the

road requires one bit of information to make a correct decision. The 0s

and 1s on the right-hand side summarise the instructions needed to

arrive at each destination; a left turn is indicated by a 0 and a right turn

by a 1.





The word bit is derived from binary digit, but a bit and a binary digit are

fundamentally dierent types of quantities. A binary digit is the value of a

binary variable, whereas a bit is an amount of information. To mistake a

binary digit for a bit is a category error. In this case, the category error is not

as bad as mistaking marzipan for justice, but it is analogous to mistaking a

pint-sized bottle for a pint of milk. Just as a bottle can contain between zero

and one pint, so a binary digit (when averaged over both of its possible states)

can convey between zero and one bit of information.

Bits Are Not Binary Digits



Consider a coin which lands heads up 90% of the time

(i.e. p(xh) = 0:9). When this coin is ipped, we expect it

to land heads up (x = xh), so when it does so we are

less surprised than when it lands tails up (x = xt). The

more improbable a particular outcome is, the more

surprised we are to observe it. If we use logarithms to

the base 2 then the Shannon information or surprisal of

each outcome is measured in bits (see Figure 3a)

Information and Entropy





Entropy is Average Shannon Information. We can represent the outcome of a coin

ip as the random variable x, such that a head is x = xh and a tail is x = xt. In

practice, we are not usually interested in the surprise of a particular value of a

random variable, but we are interested in how much surprise, on average, is

associated with the entire set of possible values. The average surprise of a

variable x is dened by its probability distribution p(x), and is called the entropy of

p(x), represented as H(x).

The Entropy of a Fair Coin. The average amount of surprise about the possible

outcomes of a coin ip can be found as follows. If a coin is fair or unbiased then

p(xh) = p(xt) = 0:5

then the Shannon information gained when a head or a tail is observed is log

1=0:5 = 1 bit, so the average Shannon information gained after each coin ip is

also 1 bit. Because entropy is dened as average Shannon information, the entropy

of a fair coin is H(x) = 1 bit.

The Entropy of an Unfair (Biased) Coin. If a coin is biased such that the

probability of a head is p(xh) = 0:9 then it is easy to predict the result of each coin

ip (i.e. with 90% accuracy if we predict a head for each ip). If the outcome is a

head then the amount of Shannon information gained is log(1=0:9) = 0:15 bits.

But if the outcome is a tail then







The reason this denition matters is because Shannon's source coding theorem

(see Section 7) guarantees that each value of the variable x can be represented

with an average of (just over) H(x) binary digits. However, if the values of

consecutive values of a random variable are not independent then each value is

more predictable, and therefore less surprising, which reduces the information-

carrying capability (i.e. entropy) of the variable. This is why it is important to

specify whether or not consecutive variable values are independent.





could be used to represent m = 20:469 or 1.38 equiprobable values; as if

we had a die with 1.38 sides. At rst sight, this seems like an odd

statement. Nevertheless, translating entropy into an equivalent number

of equiprobable values serves as an intuitive guide for the amount of

information represented by a variable.

Dicing With Entropy. Throwing a pair of 6-sided dice yields an outcome

in the form of an ordered pair of numbers, and there are a total of 36

equiprobable outcomes, as shown in Table 1. If we dene an outcome

value as the sum of this pair of numbers then there are m = 11 possible

outcome values Ax = f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g, represented by

the symbols x1; : : : ; x11. These outcome values occur with the

frequencies shown in Figure 4b

and Table 1. Dividing the frequency of each outcome value by 36 yields

the probability P of each outcome value. Using Equation 4, we can use

these 11 probabilities to nd the entropy



Table 1: A pair of dice have 36 possible outcomes.

Sum: outcome value, total number of dots for a given throw of the dice.

Outcome: ordered pair of dice numbers that could generate each symbol.

Freq: number of dierent outcomes that could generate each outcome value.

P: the probability that the pair of dice yield a given outcome value (freq/36).

Surprisal: P log(1=P) bits.



For example, if a variable has high entropy then our initial uncertainty about

the value of that variable is large and is, by denition, exactly equal to its

entropy. If we are told the value of that variable then, on average, we have

been given information equal to the uncertainty (entropy) we had about its

value. Thus, receiving an amount of information is equivalent to having

exactly the same amount of entropy (uncertainty) taken away.





Shannon’s Information Theory

Claude Shannon: A Mathematical Theory of Communication

The

Bell System Technical Journal, 1948
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Example

Determine the entropy of the mobile phone screen

if its resolution is 320/240 and each pixel can 
reflect one of 4096 colors

decision
assume that the colors of the pixels are equally 
probable and mutually independent, then the 
entropy of one pixel is

total pixels  320*240=76800

and the entropy of the whole screen



if system A has n states А1, А2,…Аn and the 
probabilities of these states are respectively
p1,p2,…pn; p1+p2+…+pn=1, then the entropy 
of system A is called the quantity



Unit of entropy
One bit is the entropy of the simplest physical system, which can 
only be in the bottom of two states, and these states are equally 
probable



Let system A have two states A1 and A2 with probabilities 
B1 and B2, then the entropy of such a system is:

Example





entropy properties

1. entropy is always non-negative

since the probability values are expressed in quantities not 
exceeding 1, but their logarithms are negative numbers or 0

2. if pi = 1 (and everything else Pj = 0, 
j=1,…(n-1)) then H(A)=0

3. H(A)=Hmax, for p1=p2=…=pn=1/n
4. H(AB)=H(A)+H(B)

reconsider your answers


